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A resonance for an area-preserving map is a region of phase space delineated by "partial separatrices", curves formed from 
pieces of the stable and unstable manifold of hyperbolic periodic points. Each resonance has a central periodic orbit, which 
may be elliptic or hyperbolic with reflection. The partial separatrices have turnstiles like the partial barriers formed from 
cantori. In this paper we show that the areas of the resonances, as well as the turnstile areas, can be obtained from the actions 
of homoclinic orbits. Numerical results on the sealing of areas of resonances with period and parameter are given. 
Computations show that the resonances completely fill phase space when there are no invariant circles. Indeed, we prove that 
the collection of all hyperbolic cantori together with their partial barriers occupies zero area. 

1. Introduction 

In an integrable Hamiltonian system, most of 
the motion is quasiperiodic and confined to in- 
variant tori. The simplest class of Hamiltonian 
systems for which the dynamics can be more 
complicated is that of area-preserving maps. In 
these systems the tori are one-dimensional, so they 
can be called invariant circles or invariant curves. 
For  non-integrable maps there may exist some 
invariant curves; but many of the invariant curves 
are replaced by invariant Cantor sets [2-4], which 
we call "cantori".  

In a previous paper [1] we initiated a theory of 
transport in area-preserving maps. Transport in 
chaotic regions is impeded by partial barriers 
which are formed on the framework of the cantori. 
Flux across these partial barriers takes place 
through "turnstiles". We believe that the partial 
barriers can be chosen so that the turnstiles line 
up in one or more "chimneys". Outside the chim- 
neys there is no flux across the partial barriers. 
Choosing a discrete set of partial barriers (corre- 

sponding to the "most  important" cantori) parti- 

tions the phase spac e into regions between which 
flux occurs, the amount being calculable as the 
difference in action of certain orbits. This allows 
one to estimate transport rates. 

In this paper we continue the discussion of 
transport, providing a less arbitrary partition of 
phase space. The corresponding partial barriers 
are formed from pieces of stable and unstable 
manifold of hyperbolic periodic points, and the 
regions they bound we call "resonances". 

Resonances are easily defined for integrable sys- 
tems. Here we use "integrable" in the weak sense, 
permitting the integrals to have places where their 
derivatives fail to be independent. Then they can 
have isolated hyperbolic periodic orbits, with sep- 
aratrices joining their points (consider for exam- 
ple, the time-1 map of the simple pendulum). The 
region interior to a separatrix is a resonance; it 
contains within it an orbit of the same period as 
the hyperbolic orbit. Each resonance is made up 
of a chain of such "islands". The number of 
islands is a multiple of the period of the central 
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periodic orbit, the multiple commonly being 
unity. 

Similar resonances appear in profusion when 
integrable systems are perturbed. However, the 
resonances do not appear to be well-defined, since 
narrow bands of apparently chaotic motion 
generically replace the well-defined separatrices. 
As the perturbation amplitude is increased, the 
sizes of two such resonances, as calculated by 
perturbation theory, can become large enough so 
that they would overlap, suggesting that all the 
invariant tori between the resonances are de- 
stroyed and there is "global chaos". This is the 
basis of the Chirikov resonance overlap method [5, 
6]. 

In section 2 we recall a precise construction for 
resonances of non-integrable area-preserving maps 
[7, 8]. These resonances are bounded by "partial 
separatrices", formed from stable and unstable 
manifolds of hyperbolic periodic points. They have 
turnstiles just like the partial barriers formed from 
cantori. The flux in and out of resonances takes 
place only through these turnstiles. The area enter- 
ing or leaving a resonance from above or below is 
related to the difference of action between pairs of 
heteroclinic orbits [1]. 

In section 3 we recall this flux formula, and 
extend it to obtain the area of a resonance. A 
resonance has a well-defined area regardless of 
whether its central periodic orbit is elliptic or 
hyperbolic with reflection, though not all this area 
may be accessible to a chaotic region. We will call 
the resonance elliptic or hyperbolic accordingly. 
We also find a formula for the area under the 
partial barrier formed from a cantorus. 

As Birkhoff proved [9], each elliptic periodic 
point generically has elliptic periodic orbits which 
encircle it, and elliptic periodic orbits which en- 
circle them, a d  in f in i tum.  This complicates matters, 
but we avoid this complication by restricting ex- 
plicit calculations in this paper to resonances of 
the primary "class" [10], for which the central 
periodic orbits are rotational rather than vibra- 
tional. Our formulae are equally valid, however, 
for any class of resonance. We believe that with an 

appropriate convention, the regions occupied by 
resonances of the same class never overlap. 

In section 4 we use these formulae to calculate 
some resonance areas. We also present numerical 
evidence which suggests that almost all of phase 
space is made up of resonances and invariant tori, 
the remaining parts, including all the cantori and 
their partial barriers, being of measure zero. We 
also present a proof, based on Poincar~ recur- 
rence, that the partial barriers formed from can- 
tori have measure zero, provided they are hyper- 
bolic. 

We conclude in section 5 with a discussion of 
transport and of unresolved problems. 

2. Resonances and chimneys 

Suppose T is an area-preserving map. We de- 
note phase space points by capital letters and their 
components by small letters, e.g. X = ( x , p ) .  

Orbits are denoted by subscripted variables, e.g. 
Xt+ 1 -- T X  t. The phase space is assumed to be a 
cylinder or annulus, with the configuration or 
angle variable, x, of period unity. The momentum 
coordinate is p. An example we shall use fre- 
quently is the "standard map": 

P, + 1 = P, - k / 2  ~r sin (2 Trx t), 

Xt+l  ~ Xt + P t + l ,  

which has a single parameter k. 

2.1. R e s o n a n c e s  

We introduce the general theory of resonances 
with a particular example from the standard map. 
The 1 /3  resonance is shown in fig. 1 for k = 1.672. 
The angle coordinates x, of the period 3 orbits of 
this resonance are stationary points (x 0, x 1, x2) of 
the action sum 

W =  F ( x  o, xz) + F ( x  z, x2) + F ( x  2, x o+ 1), 
(2.a) 

where the generating function F for two succes- 
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Fig. 1. Resonance of frequency 1/3 for the standard map in symmetry coordinates. M t are points on the period 3 hyperbolic orbit, 
S t are points on the period 3 elliptic orbit. Orbits homoclinic to M t are labeled by " + "  on the upper separatrix and " - "  on the 
lower separatrix. The resonance boundary is indicated by solid lines. Dashed lines represent the other boundaries forming the 
turnstiles in the partial separatrices. 

sive points of an orbit is 

,)2 V ( x )  (2.2a) F ( x , x ' ) = ½ ( x - x  - 

with the potential 

V ( x ) =  k cos (21rx). (2.28) 
(2vr) 2 

Stationarity of W gives a second difference form 
of the map T. The Hamiltonian form displayed 
above is obtained by defining the momentum as 

ar(x,x') 
P' = Ox' (2.3a) 

Stationarity of the action then implies 

OF(x,  x ' )  (2.3b) 
P Ox 

Any area-preserving map can be written in the 
form (2.3) for some generating function F, pro- 
vided the twist condition Ox'/Op ~ 0 is satisfied 
everywhere. 

For  k 4:0 there are at least two stationary points 
of (2.1), a minimum and a "minimax." The points 
( M t } are the points of the periodic orbit of period 
3 for which the action sum is a minimum. This 
orbit is normally an unstable hyperbolic orbit, but 

could exceptionally be parabolic (e.g. for k = 0). 
We will always assume that the minimising peri- 
odic orbits are hyperbolic. The points (S  t } repre- 
sent a periodic orbit of the same period for which 
the action sum is a minimax, i.e. a saddle point 
with only one downward direction in the space of 
the angle coordinates (x 0, x 1 . . . .  x n = x 0 + m) of 
the orbit (m = 1, n = 3 in this case). This orbit 
may be a stable elliptic orbit or an unstable orbit 
that is hyperbolic with reflection: for present pur- 
poses it does not matter which. 

For  an integrable system there would be a sep- 
aratrix joining the points M t of any hyperbolic 
minimising orbit, to form a chain of islands; each 
island surrounds a point S, of the minimax orbit. 
But for non-integrable systems there is only a 
"par t ia l  separatrix", whose structure is a bit more 
complicated. It is made up of pieces of stable and 
unstable manifolds of the minimising periodic 
points. 
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There is an upper partial separatrix and a lower 
partial separatrix, labelled in fig. 1 by superscript 
+ and - ,  respectively. The solid lines represent 
the boundary of the 1 /3  resonance, and the arrows 
represent asymptotic behaviour. 

The upper partial separatrix is constructed from 
the upper unstable and stable manifolds of M t. 
These manifolds must intersect. Choose any such 
point of intersection, say M3 + in fig. 1. The choice 
is arbitrary (see discussion below). The orbit of 
such an intersection point, shown as the + 's in 
the figure, is homoclinic to the orbit of M0: it 
approaches this periodic orbit both in the past and 
in the figure. To construct the upper resonance 
boundary follow the right-going branch of the 
unstable manifold of M 2 until it reaches M3 +. At 
M3 + switch to the stable manifold, and follow it to 
M 0. This forms a segment of the upper partial 
separatrix; the remaining segments are formed 
from its preimages. The first preimage connects 
M 1 to M 2 and the second M 0 to M 1. Thus after 
two preimages we obtain the upper solid curve 

shown in fig. 1, which is the upper resonance 
boundary. 

The third preimage is back in the original gap, 
and consists of a longer piece of stable manifold, 
the extra piece appearing dotted in fig. 1, and a 
shorter piece of unstable manifold, joining at M0 ~ . 
Area preservation implies there is an intersection 
point of the stable and unstable manifolds, S(;, 
between M~- and Mr. The figure-of-eight formed 
by the stable and unstable segments between M~ 
and M3 + is called the turnstile. The left lobe of the 
turnstile is the set of points which will cross the 
partial separatrix from below to above on the next 
iteration. Similarly, the fight lobe is the set of 
points which will cross from above to below on 
the next iteration. 

The lower partial separatrix has similar con- 
struction and properties, using lower stable and 
unstable manifolds. The resonance is the region 
bounded by the upper and lower separatrices. In 
fig. 1 it consists of the three curvilinear "rectan- 
gles". They all have equal area. In order to leave 

0 .3  
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Fig. 2. Resonance of frequency 1 /7  for the standard map at k = 0.972. The resonance is symmetric about x = 0, so only the x > 0 
half is shown. The upper and lower separatrices are formed by the constrained minima of the action for 30 points in the largest gap 

around x = 0. 
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Fig. 3. Resonance of frequency 3/7  for the standard map at k = 1.272 in symmetry coordinates• The iterate of the island 
surrounding x = 0 is the rightmost island, surrounding x = 0.43. 

the resonance an orbit must land in the left lobe 
of the upper turnstile or the right lobe of the lower 
turnstile. 

In figs. 2 and 3 we illustrate the 1 /7  and 3 /7  
resonances. For  the second case, the apparently 
complicated vertical structure is due to big 
differences in momenta for islands that are 
neighbouring in configuration space but not in 
time. 

Now we summarise the general construction of 
resonances for area-preserving twist maps. 

(i) For  all integers m, n with n > 0, there is a 
minimising m/n orbit, i.e. a minimum of Win~ . = 

. - 1  ~_,t=oF(x,, xt+l) with x ,  = x 0 + m. 
(ii) Minimising periodic points are generically 

hyperbolic, so have stable and unstable manifolds, 
smooth curves W s and W u such that W s is the set 
of points whose orbits are asymptotic to the orbit 
of the given point in the future, and similarly for 
W u in the past. 

(iii) The set of points belonging to minimising 
m/n orbits is monotone, i.e. the map preserves the 
angular order on the set. This allows one to speak 
of the gaps as coming in orbits. 

(iv) In each orbit of gaps in the set of minimis- 
ing m/n points, there is a minimax m/n orbit, i.e. 
saddle point of W,,/,. 

(v) In each orbit of gaps in the set of minimising 
m/n points, there is a minimising orbit asymp- 
totic to the orbit of the left end point in the past 
and to the orbit of the right end point in the 
future. We call this an re~n+ heteroclinic orbit. 
Here "minimising" means that every finite seg- 
ment of the orbit has minimum action with re- 
spect to variations fixing the ends. Similarly there 
is an m/n_ heteroclinic orbit asymptotic to the 
orbit of the right end in the past and to the orbit 
of the left end in the future. 

(vi) Given an m/n+ heteroclinic point, the 
right-going branch of the unstable manifold of the 
left endpoint of the gap and the right-going branch 
of the stable manifold of the right end intersect at 
that point. Similarly for m / n  heteroclinic points, 
with right and left interchanged. 

(vii) An upper partial separatrix can be formed 
by choosing one minimising m/n+ heteroclinic 
point for each orbit of gaps in the set of minimis- 
ing rn/n points. Connect it to the left end point of 
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the gap with its unstable manifold and to the right 
end wkh its stable manifold, and connect the 
endpoints of the image gaps with the image of 
this. Similarly for lower partial separatrices. 

(viii) The union of the sets of points of m/n 
orbits and m/n+ orbits is monotone. Similarly for 
the union of m/n and m / n  orbits. 

(ix) For each orbit of gaps in the above there is 
a minimax m/n+ (respectively m / n )  hetero- 

clinic orbit. 
(x) The minimax heteroclinic points also lie on 

the corresponding stable and unstable manifolds 
and form the turnstile centres. 

The arbitrariness in choice of minimising het- 

eroclinic point affects the shape of the partial 
separatrices, but not the areas of the resonances, 
nor of the turnstiles. 

There are also rotational partial barriers corre- 
sponding to each irrational number, formed on a 
f ramework of the cantorus and its minimax homo- 

clinic orbit. While there is only one barrier for 
each irrational, the partial separatrices give two 
rotational partial barriers for each rational. These 
are in one-one correspondence with the continued 
fraction expansion for the reals: the upper partial 

barrier  corresponds to the limit to a rational from 
above, and the lower partial barrier to the limit 
f rom below, e.g. since 1 /3  = [0,2,1] = [0,3] we 

have 

1 / 3 ] + -  lim [ 0 , 2 , 1 , n ] ,  
n ----~ o o  

1/3]  -= lim [0,3, n]. 

For  each rational continued fraction there are two 
periodic orbits: the minimising and minimax 
orbits. Similarly a limit of minimising (minimax) 
orbits approaches a minimising (minimax) orbit. 
These limits can be used as a guide to the compu- 
tation of the partial barriers, as discussed in sec- 
tion 4.2 below. 

Stable and unstable manifolds can be derived 
for hyperbolic minimising orbits from the action 
principle, and we believe that this will extend to 
the non-hyperbolic case. We discuss this deriva- 
tion in appendix 1 for those interested. 

2.2. Chimneys 

There is a certain amount of freedom in defin- 
ing the resonance boundary, corresponding to the 
choice of homoclinic points at which to switch 
from unstable to stable manifold in forming the 
partial  separatrix. This does not matter too much 
when dealing with a single resonance. Indeed we 
shall see in section 3 that the area of a resonance 
and the areas of the upper and lower turnstiles are 

independent  of these choices. However, the choice 
is important  when it comes to fitting resonances of 
different rotation number together. We would like 
to make a choice such that resonances never over- 
lap, as we aim to get a partition of phase space. 

The standard map is particularly simple, as 
there is a natural choice. The cosine potential term 
-V(x) in the generating function (2.2) has a 
max imum at the origin, so it seems reasonable 
that all orbits of absolute minimum action must 
avoid x = 0. Indeed, numerical experiment con- 
firms that the configurations x t of the minimising 
orbits all have their largest gap around x = 0. This 
applies whether the orbits are cantori, periodic 
orbits, or the upper and lower minimising orbits 

homoclinic to periodic orbits. On the other hand, 
every minimax orbit appears to have a point on 
the line x = 0. 

Thus it is natural to choose turnstiles that have 
their centrepoints on this fine. Then the union of 
these turnstiles forms a "chimney": all vertical 
t ransport  takes place in this region. Our numerical 
work for the standard map suggests strongly that 
the iterates of the largest gap cover the partial 
separatrix completely. 

This structure is a result of the symmetry of the 
standard map. We expect it to generalise to the 
class of reversible maps, i.e. those possessing a 
"reflection" S (i.e. orientation reversing map with 
S 2 =  identity) which conjugates the map to its 
inverse (STS = T-1). They always seem to have a 
similar, "dominan t"  symmetry line on which each 
minimax orbit  has a point. Thus we can choose 
this point to be the centre of the corresponding 
turnstile. Then the turnstiles all line up along this 
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dominant  line, and the resulting "chimney" spans 

this line. 
We have no theory of chimneys which applies 

generally, but we believe that the idea can be 
extended with care to more difficult cases in which 
the structure of the turnstiles may be more com- 
plicated, or there may be more than one indepen- 
dent turnstile in a cantorus or partial separatrix. 

Since the stable manifolds of different periodic 
orbits cannot intersect (nor can the unstable mani- 
folds), the turnstiles are expected to line up in a 
nice fashion as sketched in fig. 9. 

3. Areas and actions 

Areas of resonances and of turnstiles are both 
needed for the theory of transport. An obvious 
way to calculate them is to approximate the 
boundaries by closely spaced points and then use 
numerical integration; however, this is not the 
best way. In [1], we showed that the area of the 
turnstiles can be obtained from the difference in 
action between minimising and minimax homo- 
clinic orbits. We now show how the areas of 
resonances can also be obtained from the actions 
of homoclinic orbits. 

3.1. Fundamental formula 

The basic formula relating action to area is 
illustrated in fig. 4. Let cg be a directed curve in 
the phase plane. Parametrise it by ~ ranging over 

[0, 1], so that 

 e(x) = (x(X), p(X)}. (3.1) 

We define the algebraic area, A, "under"  ~g to be 
the signed area bounded by the loop formed from 
oK, the vertical lines x = x(0) and x = x(1) and the 
horizontal line p = 0. The direction of the loop is 
set as that of increasing X along cg. Regions 
encircled by (counter-) clockwise loops are defined 
to have (negative) positive area, as usual. For the 
simple situation depicted in fig. 4, A is merely the 
geometric area. If, however, ~ intersects itself or 
if p (X)  is negative for some range of X, then the 
sign of the areas of these regions will change, and 
A will not be the geometric area under cg. In any 
case we will still refer to A as the area "under"  (g, 
though some regions may be included with nega- 
tive sign. 

The image of (g under the map T is T(Cg) = cg,. 
The area under cg, is denoted A', and, as is 
shown in fig. 4, is the signed area enclosed by cg,, 
the verticals x = x ' ( 0 )  and x = x ' ( 1 ) ,  and the 
horizontal p = 0. 

Let F(x,  x ' )  be the generating function of the 
twist map T from the initial point with angle x(~,) 
to its image point with angle x ' (~ ) .  If the corre- 
sponding momenta are defined by (2.3), then 

d F ( x , x ' )  O F ( x , x ' )  dx '  O F ( x , x ' )  dx  
dX - Ox" dX + Ox d~ 

, d x '  dx  (3.2) 
= P  ~ - P d X "  

• ---" '~( x ,p) 

A 

x(O) x(~X) x(1) 

A' 

x'(O) x'~} x'(1) 

Integrating both sides with respect to X, we obtain 

a F -  F [x(1) ,  x ' (1) ]  - F [x(O), x'(O)] 

f l  , d x '  f l  dx  
= jo p --d--~ dX - Jo P-d~ dx .  (3.3) 

It is easy to see that the integrals in (3.3) actually 
represent the algebraic area, as we have defined it 
above, thus 

Fig. 4. Illustration of the relation between action and areas, 
eq. (3.4). AF = A' - A. (3.4) 
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Eq. (3.4) is the basic formula from which all the 
others follow. 

3.2 Stable and unstable segments 

Two points Y0 and Z 0 are called future asymp- 
totic if they are distinct, but their orbits approach 
each other asymptotically, so as to become indis- 
tinguishable at sufficiently long times in the fu- 
ture: 

lim I Yt - Ztl = 0, (3.5) 
t - -*~  

where I I represents any norm. Similarly they are 
past asymptotic if they are distinct and their orbits 
approach each other asymptotically in the past: 

l im I Y , -  Z,I = 0. (3.6) 
l ~ OO 

Points which are both future and past asymptotic 
are homoclinic (to each other). If Yo is past 
asymptotic to W 0 and future asymptotic to Z o 
then it is heteroclinic from W 0 to Z 0. 

If an orbit X r is hyperbolic (the notion of 
hyperbolicity is not limited to periodic orbits; see 
Lanford [12] for an introduction), then the set of 
points which are future or past asymptotic to X o 
form two smooth curves without self-intersection, 
crossing transversely at X 0, called the stable and 
unstable manifolds of X 0. All points on the same 
stable manifold are future asymptotic, and all 
points on the same unstable manifold are past 
asymptotic. Given two such points we call the 
piece of invariant manifold between them a stable 
or unstable segment. The areas under such seg- 
ments are important for the theory of transport, 
and will lead to formulae for the area of reso- 
nances. 

We can find stable (unstable) segments numeri- 
cally by taking the limit of backward (forward) 
iterates of straight lines joining corresponding 
points of two future (past) asymptotic orbits. Thus 
if Ie0 and Z 0 are future asymptotic, let ~j ,  j > 0, 
be the directed straight line segment from ~ to Zj. 

t_. . . . j j  
Zt T-i T -I 

Fig. 5. Stable segments,  5~t , for a future asymptotic orbit pair 
{ Yt }, (Zt } are obtained from the preimages of the line seg- 
ment  &at+ / as j approaches oe. 

Then the stable segment joining Y0 to Z o is 

5P o = lim T J(LPj). (3.7) 

This construction is illustrated in fig. 5. Similarly a 
pair of past asymptotic points gives an unstable 
segment 

ago = lim TJ(L,e_j). (3.8) 
j ~ o ~  

There is no particular significance in choosing 
to be straight lines: at least in the case of rational 
rotation number, any Lipschitz graphs over the 
stable manifold (in stable-unstable coordinates 
near the hyperbolic points) with uniform Lipschitz 
constant would give the same segments 5P o and 
ag o. The images of a stable (unstable) segment are 
also stable (unstable) segments, and are denoted 
G(ag,)- 

Using the fundamental formula (3.4), the area 
below a stable or unstable segment can be ex- 
pressed in terms of sums of action differences. Let 
( Yt } and { Z t } be a future asymptotic pair. De- 
note the angle coordinate of Yt by Yt and of Z t by 
z, and the action difference by 

AFt=- F(zt ,  z t + l ) -  F(yt, yt+l). (3.9) 

The future action difference sum is defined as 

a~,Vt f =  ~_. a ~ .  (3.10) 
j= t  

Similarly if { let } and { Z t } are past asymptotic 
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orbits then the past action difference sum is 

t - -1  

A W t P  ---~-- E A F j ,  ( 3 . 1 1 )  

j = - o o  

where A F  is still given by (3.9). Note that AWt r 
includes AF t while AWeP does not. The conver- 
gence of these sums is guaranteed if the union of 
the two orbits, plus their translates in angle by 
integers, is monotone. This is always the case 
whenever Yt and Z t are minimising orbits with the 
same "rotation symbol" m / n  or m / n  + or m / n  - 

or o~ (irrational), or one is minimising and the 
other is an associated minimax orbit because 

EIz,-Y,I -< 1. 
Parametrise the stable segment 5at of a future 

asymptotic pair { Yt} and { Zt )  by ~, such that 
5at(0) = Yt, 5~t(1) = Zt and 5~t+l(X ) = Trat(~,). The 
area under 5°,, denoted A~, is obtained by iterat- 
ing eq. ( 3 . 4 ) :  

A ~ = A ~ + ~ - A F t = A ~ + 2 - A F t + x - A F t =  . . .  

k-1 
=A~+k-- Y'= AFj+t 

j = 0  

= - ~ AF/ (since l i m  A~, = 0) 
j=t 

= - a ~  f. (3.12) 

which is the difference in actions of the two orbits. 
Note that it is independent of t. This is because T 
is an area-preserving map, and hence the region 
contained between the stable and unstable seg- 
ments has the same area for all time. 

Once the area under single segment is known, 
we obtain the total area under all the segments 5at 
after time t by simply summing: 

s 

k = l  k=l  k= l  

( 3 . 1 5 )  

Similarly the total area under all the unstable 
segments at time t and before is 

0 0 

E ALk = E aw?+,, 
k =  - o o  k =  --oo 

o 

= -  kzaV,+ ,. 
k = - - o o  

(3.16) 

Finally, if ( Yt } and { Z t } are homoclinic, then the 
total area under all the future stable segments and 
the past unstable segments (with the choice that 
the unstable segment is used at time t) is 

oo 

A~ + APt = A t  =- - E k a F t + k -  (3 .17)  
k ~ - o o  

If {Yt) and { Z t }  are past asymptotic, and A~ is 
the area under their unstable segment q/t, then a 
similar calculation gives 

A~' = AW, P. (3.13) 

Note that the sign in (3.13) is indeed different 
from that in (3.12). 

We can combine (3.12) and (3.13) if (Y,} and 
( Z, } are homoclinic. The signed area between the 
unstable and stable segments, which is positive 
where ql t is above 5at, is given by 

oo 

A t - A ~ = A W =  ~ AFj, (3.14) 
j =  -oo 

In general, eq. (3.17) is not independent of the 
time t (where the shift from unstable to stable 
segment is made) and does not give a useful 
quantity. In fact we see that A t + I = A t + A W ,  
where AW is given by (3.14). There are special 
cases, however, for which AW is zero, and then 
(3.17) is independent of the origin of time. This 
brings us to the applications of these results. 

3.3. Area under partial separatrices 

Now we use eq. (3.17) to obtain the area under 
an upper partial separatrix for the simplest case of 
a 0 /1  resonance around an orbit of period 1, or 
fixed point x = x v = xe= Xr, aS illustrated in fig. 
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<, . . . .  --.Mr 
: - .  . . . . .  " ~ ' ~  . . . .  ~ ~ s  M +  

:Mr 

A + At 

xt x, 

Fig. 6. Area under the upper partial separatrix of a fixed 
point, eq. (3.19). M t and M r (the same point) represent the 
minimising fixed point. 

Now shift t by one in the second term to obtain 

A + =  Y', [F(x+,x++l)-F(xF, xF) ]. (3.19) 

Fig. 7 illustrates the lower partial separatrix. 
Notice that the points of the homoclinic orbit 
move to the left in this case, so that increasing t 
means decreasing x. Defining Z t and Y, as succes- 
sive points on the lower minimising orbit we ob- 
tain 

A = ~ [F(xv, xF)-F(x/,xt+x) ]. (3.20) 
t =  --  C~ 

M~ 

X~ 

'5,e  M>/,Mr 
A; A; A-, 

X~ X 7 xg x-, xr 

Fig. 7. Area under the lower partial separatrix of a fixed 
point, eq. (3.20). 

6. For  this simple case we choose Y, to be the 
point  M + of an upper minimising homoclinic 
orbit  and Z t = M + 1 to be the next point on the 
same orbit. The orbits {M +} and {M +1} are 
homoclinic, since they are both homoclinic to the 
fixed point. Furthermore since they are the same 
orbit, the action difference, (3.14), vanishes. The 
area under the complete upper partial separatrix is 
therefore 

A + = - -  ~ t [ F ( x + , x + + l ) - F ( x + l , x + ) ] .  
l =  O0 

(3.18) 

Another  formula for A + can be obtained from 
(3.18) by subtracting the action of the fixed point, 
F(x F, xF), from the first term in the brackets in 
(3.18) while simultaneously adding it to the sec- 
ond. This is necessary to maintain convergence. 

The final result is that the area in the 0/1  reso- 
nance is 

A = A  + -  A - .  (3.21) 

It may seem surprising that the contributions to 
the area of the resonance from the fixed point 

action F(xv, xv) in (3.19) and (3.20) add together 
instead of cancelling, but this is so, and comes 
f rom the fact that the asymptotic motion ap- 

proaches the periodic orbit from the left in the 
upper  separatrix, and from the right in the lower 
separatrix. 

The analysis for an arbitrary m/n resonance is 
similar, and the same figs. 6 and 7 can be used, 
though now x~ and x r represent two neighboring 
angle coordinates on the orbit. We choose Yt = M+ 
and Z t = M+,. Again, since ~ W  for these orbits is 
zero, we have the area under the complete upper 
partial separatrix as 

A += _ ~ '[F(x[+n,xt+,++ 1)_r (x+ x++l)]" 
t =  - - 0 0  

(3.22) 

This sum can be reordered, adding and subtract- 
ing the action of the periodic orbit, and t shifted 
by n in the last term to obtain 

A+=n [F(xi,+,xi,+t+,)-F(x,,x,+l)]. 
i= - -c~  t = l  

(3.23) 
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M_~ M 

Fig. 8. Area under a cantorus partial barrier. The orbit of the 
left gap endpoint is denoted by superscript " / "  and of the 
right gap endpoint by "r". 

The expression for A-  is identical except for 
signs. 

In the above analysis, it has been assumed that 
there is only one minimising m / n  orbit. If there is 
more than one such orbit, then each gives a family 
of gaps and one has to sum the contributions from 
each family. 

3.4. Area under partial barriers formed from cantori 

Another result which follows from (3.17) is the 
area under the partial barrier formed from a 
cantorus, as is illustrated in fig. 8. In this case we 
let { Yt } = { Me } be the orbit of the left endpoints 
of a gap in the cantorus and { Z t } = (Mt r } be the 
orbit of the right endpoints. These orbits are ab- 
solute minima of the action, and the action differ- 
ence AW, (3.14), vanishes as proved by Mather 
[13]. Backward iterates of the unstable segment of 
a gap and forward iterates of the stable segment 
form the cantorus partial barrier. Eq. (3.17) di- 
rectly gives the area under the gaps of the cantorus. 

The total area under the partial barrier is thus 
given by the sum of (3.17) and the area under the 
cantorus itself. Numerical work, however indicates 
that cantori have zero length [14], and therefore 
that the area below them is zero. Indeed this has 
been proved under the hypothesis of non-zero 
"phonon  gap" [15]. In appendix 2 we show how to 
modify this proof so that it applies in the dynami- 
cally more significant case of hyperbolicity. Thus 
in the hyperbolic case the area under the partial 
barrier is given by (3.17) alone. 

Table I 
Areas and actions. The sums are over action differences evaluated 
on the homoclinic pair of orbits { Yt }, { Zt }, defined in (3.9). M 
denotes a minimising orbit, S a minimax orbit, and H a hetero- 
clinic orbit. Superscripts _+ denote orbits homoclinic to the peri- 
odic orbit from the left (right), and t and r denote orbits of the 
left or right gap endpoints of the cantorus, or the left and right 
heteroclinic orbits 

Orbit 

A r e a = -  ~ tz~F t Flux= ~ AF t 

Y, Z, Y, Z, 

Periodic m/n 

Upper partial 
separatrix of 
m/n orbit 

Lower partial 
separatrix of 
m/n orbit 

Cantorus 

Heteroclinic 
from m/n to m'/n'  

Mt 
+ 

Mt+n 

S, 

S, ÷ 

M,-° W S, 

Note that the area under a partial barrier is 
independent of the construction of the partial 
barrier itself, depending only on the orbit of the 
gap endpoints. This is true for the separatrices as 
well. These formulae are summarized in table I. 

Finally, we admit that we have no formula for 
the area under a KAM surface (invariant circle) in 
terms of the actions of a finite number of orbits. 
One might have thought this would be the sim- 
plest case! 

3.5. Flux 

Eq. (3.14) defines the flux through a homoclinic 
pair of orbits. For example we can let (Y~ } be a 
minimising orbit ( M  t} and {Zt}  be the corre- 
sponding minimax orbit { S t }, corresponding to a 
cantorus or a partial separatrix. In this case (3.14) 
implies that the upward flux flowing between { M t } 
and (St} is the difference in actions of these 
orbits. 
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M mln 

x .... f 

X M re'In' 

Fig, 9, Sketch of  the area  conta ined in the intersect ion of  two turnstiles. The  orbits  H f and H r are heteroclinic,  approach ing  the 

u p p e r  r e sonance  minimis ing  orbit  as t ~ - oo and  the lower  resonance  minimis ing  orbit  as t -~ oo. 

For  a resonance, a complete partial barrier can 
be constructed from the collection of all the past 
unstable and future stable segments connecting 

M t to S t, and the past unstable and future stable 
segments connecting S t to Mr+ , (see fig. 1). The 
downward flux is the difference in action between 
the latter two orbits, which is of course the nega- 
tive of the upward flux. Analogously a partial 
barrier  for a cantorus is constructed from the 
segments connecting M[ to S, and those connect- 
ing S t to MtL If  the iterates of the chosen gap fill 
in all the gaps of the cantorus, then AW is the 
total flux through the cantorus. Furthermore, since 
the action of Mt e and Mt r are the same, the net 
flux is zero. 

The upper  turnstile area of an m/n resonance 

gives the area that makes a transition from inside 
the rn/n resonance to some resonance above m/n. 
Similarly the lower turnstile represents the area 
making a transition to below m/n.  

For  calculations of transport it is not sufficient 
to know only these two areas; what we need to 
know is to which resonance the transition occurs, 
or equivalently how much of the m/n turnstile 
area is in a given resonance m'/n' .  This can again 
be related to a difference in action, this time 
between orbits heteroclinic from the m/n mini- 

mising orbit to the m'/n '  minimising orbit, as 
depicted in fig. 9. There are two such orbits in the 
fight lobe of the turnstile, labelled H e and H r, 

which are homoclinic to each other. Eq. (3.13) 
then implies that the difference in action between 

these two orbits is the area of the lower m/n 
turnstile that is below the m' /n '  partial sep- 
a r a t r i x .  T h i s  gives the t r ans i t i on  flux 
AWm/. ~ m,/.'. The flux AWm,/.,~ . , / .  is given by 

the differences in action between the left lobe 
heteroclinic orbits. 

These formulae are also summarized in table I. 

4. Numerical results 

4.1. Finding periodic orbits 

It  is a delicate matter to devise an algorithm to 
find highly unstable periodic orbits. The most 
straightforward method is based on looking for a 
zero of a function dependent on the nth iterate of 
the map. This is bound to fail when the product of 
the largest eigenvalue of the linearization of the 
map with the smallest change in initial condition 
is comparable  to or exceeds the range of monoton- 
icity of the function. Alternative methods, based 
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on minimisation of the action, are actually more 
stable when the eigenvalue is large, indeed the rate 
of convergence turns out to be proportional to this 
eigenvalue. 

For  our purposes, we found it sufficient to use a 
variant of Aubry's gradient method to find peri- 
odic orbits [2]. This technique involves solving the 
set of n equations 

d x t / d T = - 0 W / 0 x t ,  t = 0 , 1 , 2  . . . . .  n - 1  

(4.1) 

in a fictitious time, ~-. A point, x 0 . . . . .  x ,_ t ,  with 
V W =  O, is an orbit, and is an attracting fixed 
point of (4.1) in ~" if W is a minimum. To obtain 
the minimising orbit of frequency m/n ,  one merely 
solves (4.1) from some initial condition xt(0 ), 
imposing the constraint x ,  = x 0 + m. Choice of 
the initial condition is important, however, since 
the function W can have many local minima be- 
sides the absolute minima. Note also that there are 
also lots of absolute minima corresponding to 
phase-shifting any one. 

Following [16] we use the initial condition xt(O ) 
= m t / n  + a, where a is a phase whose value does 
not matter much. Angenent [17] showed that the 
gradient flow (4.1) has the property that if you 
start with an initial condition which is ordered like 
a rotation, it will remain so for all time. Since the 
desired orbits are so ordered this is a useful prop- 
erty. For  reversible maps (the only ones we have 
considered in practice), we can obtain the mini- 
max orbit by fixing x0(~" ) to be on the dominant 
symmetry line of the map (e.g. for (2.3), the line 
x = 0). The flow (4.1) restricted to this symmetry 
line has as an attracting fixed point the minimax 
orbit. One can also use symmetry to halve the 
number of points required. After finding the sad- 
dle, we shift the points on this orbit by a small 
amount, allowing the further relaxation into the 
minimising orbit. 

Recently, it has been suggested that highly un- 
stable orbits can be found more efficiently by 
using an initial condition which minimises W in 
the limit of large k, i.e. xt(O ) are chosen at the 

maxima of V(x)  (2.3), and also ordered properly 
[18]. For further ideas see [28, 29]. 

To solve (4.1) we use a semi-implicit method, 
which involves inverting the linearization of the 
fight-hand side to allow larger time steps. This 
technique limits to Newton's method as the time 
step is taken arbitrarily large. 

The rate of convergence of the approximate 
orbit to the zero of v W  is related to the eigenval- 
ues of the Hessian matrix of second variations of 
the action, Hjk =- 02W//OXjOXk . We have shown 
previously [19] that the determinant of this matrix 
evaluated on an orbit is related to the residue as 
defined by Greene [20], 

R - ¼[2 - Tr  ( D r " ) l .  (4.2) 

For  the case of El2 ~---1, as in (2.2), we find 
det(H) = - 4 R .  For a minimising orbit, the sec- 
ond variation of the action must be non-negative, 
so it has negative residue and is therefore hyper- 
bolic. If the orbit is very unstable, then some of 
the eigenvalues of H must be quite large (say 
O(R1/n)). This implies that, providing the initial 
condition for (4.1) is close enough to the minimis- 
ing orbit for the linearized matrix to be relevant, 
convergence is rapid. However, there is typically 
at least one small eigenvalue corresponding to the 
direction of the minimax orbit, and this slows the 
convergence. Also one expects that the region of 
validity for linearization actually shrinks as the 
residue increases, and so one runs the risk of 
falling out of the basin of the minimising orbit. 

4.2. Finding homoclinic orbits 

Computation of the area of a resonance requires 
finding the homoclinic orbits to the minimising 
periodic orbit. Suppose we have a resonance of 
frequency re~n, with corresponding minimising 
periodic orbit M, and saddle S. The minimising 
and minimax homoclinic orbits are denoted M + 
and S + for the upper separatrix, and M -  and S -  
for the lower separatrix. 
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Let m / n  have a continued fraction expansion 
[a0, al . . . . .  a/]. The convergents to rn/n are the 
truncations of the continued fraction at some level 
less than 1. If  m u / n  u is the convergent closest to 
m / n  such that m u / n  u > m /n ,  then the following 

sequence of frequencies converges to m / n  from 

above as j--* oo: 

m s / n ) =  ( m u + j m ) / ( n u + j n ) ,  j =  1,2 . . . . .  

(4.3) 

There are two periodic orbits for each j:  the 
minimising and minimax orbits. As j ~ oe these 

limit to the corresponding minimising and mini- 
max homoclinic orbits, M +, and S +. As j in- 
creases, the number  of points in the neighborhood 
of M continually increases as well, but the number 
of points over the remainder of the separatrix 
quickly stabilizes. The residue, R, of the m j~% 
orbit is used as a criterion for convergence of the 
orbit  to the separatrix. As j gets large this residue 
tends to grow exponentially with j;  in fact, it 
should grow roughly as R = ( - R M ) J  since all but 
a finite number  of points on the homoclinic orbit 
are arbitrarily close to M, and so their linear 

behavior is the same as that of M. Similarly the 
error in the resonance area tends to decrease ex- 

ponentially at the rate ( - R M )  J. Thus the error 
due to truncation of the sum at a period n s ~j,, 
will be of size C0(R-1). We pick j so that R = 101°. 
For  example, with k ~ (_9(1), the orbits homoclinic 
to 1 / 3  are well approximated with j - - 1 4 .  It is 
harder to approximate the separatrix of a reso- 
nance with residue of order one. 

An easier way to find the homoclinic orbits 
when the residue is small is to search for intersec- 
tions of the stable and unstable manifolds of M. 
For  reversible maps one merely searches for the 
crossing of the dominant symmetry line by the 
unstable manifold to find the minimax homoclinic 
orbit. Begin by obtaining the eigenvectors of M 
from the linearization of the map. Put a point on 
the unstable eigenvector very close to a point on 
M. Iterate forward in time. Choose the number of 
iterations so that the point crosses the symmetry 
line (this number  can be estimated from the eigen- 
value at the fixed point). A zero finding routine 

I ] 
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Fig. 10. Area of the 2 /5  resonance for the standard map as a 
function of the parameter k. The area reaches a maximum of 
0.0242 at k = 1.45. At this point the residue of the minimising 
orbit is 2.08, and the minimax orbit is unstable. In fact the 
period doubling sequence of the minimax orbit accumulates 
near k = 1.42. 

can be used to adjust the initial position until its 
iterate falls on the symmetry line. Another way to 
find the orbits required in this paper is to use the 
fact that they are ordered. One can find them by 
iterating an initial point until its orbit gets out of 
order and then pushing the initial condition ap- 
propriately to get it back in order, e.g. using a 
bisection method. This is how some of the pictures 
of cantori in [1] were produced, and is the method 
used in [14]. 

4.3. Area of a resonance 

The area of a single r e s o n a n c e ,  A m / , ,  = A + -  
A , as a function of the parameter for the stan- 
dard map is shown in fig. 10. For small k, area is 
increasing as one would expect from perturbation 
theory (a resonance with a frequency m / n  ap- 
pears at the nth  order in perturbation theory and 
its size should grow as kn/2). As k increases the 
resonance begins to look less like the standard 
resonance of the pendulum Hamiltonian for which 
the estimate width and area oc (resonant 
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the 3 / 7  area decreases as the -0 .87  power of R, 

etc. 
The 0 / 1  resonance of the standard map behaves 

somewhat differently. Its area monotonically in- 

creases, approaching the value Ao/1 = 1 for large k 
(implying 77 = ?, = 0). This is due to the reflection 

symmetry of the map about the origin which 
implies the upper and lower separatrix have the 

same shape. Furthermore, the periodicity in the 

momentum direction implies that as k increases, 
each of the resonances m / 1  are equivalent. We 
suspect that if other driving harmonics were added 
to the standard map, these would also give reso- 
nances whose area did not go to zero for large k. 

Fig. 11. Area of the 1/3,  2 /5 ,  and 4 /11 resonances of the 
s tandard map as a function of I RI of the minimising orbit. 
The smaller period resonances have larger area. Note that all 
areas peak near R = - 2, and for large residue they decrease as 
a power of I R I, where the power approaches that given in (4.4) 
for large period. 

forcing) 1/2 holds. When the residue is 0(1), its 

area reaches a maximum and begins to decrease as 
k -n, where 7/depends on the resonance frequency. 

For  large residue, the upper and lower turnstiles 
nearly coincide and a resonance island has a char- 
acteristic "s"-shape in the gap near the dominant 

symmetry.  Elsewhere, the island shapes are more 
nearly rectangular; the sharp corners are due to 
the switch from stable to unstable manifolds. 

The area of a typical resonance as a function of 
residue is shown in fig. 11. For large residue the 
area decreases geometrically as IRI -x, where ), 
depends on the frequency. If we plot the area of 
various m / n  resonances at a some fixed parameter 
value as a function of residue, we find a universal 
law: 

h oc IRI - x  (4.4) 

with X = 0.939(+4) over the range 100 < IN[ < 101°. 
This seems to hold for any parameter value. It 
also describes the area of a single resonance as a 
function of its residue, providing n >> 1, and is a 
reasonable estimate even for small n; for example, 

4.4. Total resonance area 

To add the area of all the resonances, we use 
the Farey tree procedure to order the rationals. 
The Farey tree seems to pick out rationals in order 
of their importance. As was discussed in [1], the 
area of turnstiles strictly decreases as one moves 
down the Farey tree. Here we find that the area of 
resonances also decreases. 

To obtain a Farey tree, define the zeroth genera- 

tion by a pair of rationals, mx//nl, and m 2 / n  2 

satisfying man 2 - mxn 2 = ___ 1 (such a pair is called 
"neighboring").  The gth generation is constructed 
by adding numerators and denominators of each 
pair of neighboring rationals for all generations 
less than g. Thus the first generation consists of 

the rational ( m  1 + m 2 ) / ( n  I + n2). Each rational 
has two daughter rationals, obtained by adding its 
numerator  and denominator to its two neighbors. 
This forms a binary tree; there are 2 g-1 rationals 
in the g th generation. As is well known, every 

rational in the interval [ m l / n l ,  m 2 / n 2 ]  o c c u r s  

exactly once on the tree. 
Consider, for example, the standard map at a 

parameter  value above the critical value where the 
last rotational KAM surface is destroyed (kcr = 

0.971635406). Fig. 12 shows the areas A + and A - 
for the homoclinic orbits for all rationals on the 
( 1 / 3 , 1 / 2 )  Farey tree up to the 7th generation, as 
a function of frequency. For example the 2 /5  
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Fig. 12. Area below the upper and lower partial separatrices 
of periodic orbits of the standard map at k = 1.283. Periodic 
orbits are obtained from the Farey tree with starting rationals 
[ 1  12] up to seven generations (129 + 2 periodic orbits). Resi- 
dues range from - 1  to -4(10) 11 (the latter is for the 34/81 
orbit). 

resonance has an area 0.3917164 below its lower 
separatrix, denoted as 2 /5  [M-, and 0.4146119 be- 
low its upper  separatrix, denoted as 2/5[M~. The 
area of higher order rationals very quickly ap- 
proaches zero, as indicated by the near coinci- 
dence of the upper and lower separatrix areas for 
larger generations in fig. 12. 

The curve, "area  as a function of frequency" 

can be thought of as a picture of the "act ion" 
function of a non-integrable system. This function 
is, by definition, non-decreasing but appears 
numerically to be almost everywhere flat. It has 
jumps  across every rational according to the area 
of that resonance. From this picture it is clear why 
a perturbat ion series which attempts to find a 
smooth invariant must fail. 

The total area of the region of phase space 
between the 1 / 3  and 1 /2  resonances is given by 
the difference between the area below 1/21M- and 
that below 1/3[M+. This gives 

Atot = 6.63582(10) 2. (4.5) 

The area of an individual resonance is obtained 
f rom the difference between the areas below the 

M + and M -  orbits of that resonance. The reso- 
nance areas on the Farey tree are shown in fig 13. 

Here we include every resonance whose mother 
has an area larger than 1 0  - 6  . 

The area of all resonances between the 1/31M+ 
and 1/2[M orbits is obtained by summing the 
area of each resonance on the Farey tree. Table I! 
shows this sum for each generation through the 
seventh. To estimate the total area it is preferable 
not to sum in this fashion since, as seen in fig. 13, 
the decrease of area along Farey paths which limit 
to rationals is much slower than that along oscil- 
lating paths, so larger generations must be in- 
cluded in the former cases. Summing the areas of 

all the resonances shown in fig. 13 gives the value 
Ares = 6.63581(10) -2, which is within I part  in 

10 - 6  o f  Atot ,  (4.5). 
We conclude that resonances occupy all of the 

phase space area. This calculation has been done 
for other values of the parameter k. As k in- 
creases, the area between the 1 /3  and 1 /2  reso- 
nances decreases, and more of the total phase 
space is taken up by the driven, m/1 resonances. 
However, so long as k > kcr, we find that reso- 
nances fill phase space. 

This implies that fig. 12 is a complete "devil 's 

staircase": it is constant except for jumps at ra- 
tional points. This is analogous to the devil's 

-2 -- .... - ~w, -, 

-4 ~ !i A I, I ,I~ ' , i ~ I', 

t t! ," F 

-6 J1 ;'~ I' 

i ! i i li ~ / ~ 4 

-8i i! i 

0.35 0.40 0,45 0.50 
m/n 

[ ' ,] Fig. 13. Resonance areas on the 5,~ Farey tree for the 
standard map at k = 1.283. 
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Table II 
Area of resonances for Farey generations with starting ration- 
als ( 1 / 3 , 1 / 2 ) ,  at k = 1.283. Generation one corresponds to 
2 /5 ,  etc. 

Generat ion Resonance area 

1 0.22895E-01 
2 0.19997E-01 
3 0.14144E-01 
4 0.66828E-02 
5 0.19733E-02 
6 0.48200E-03 
7 0.12913E-03 

Total 0.663(M229E-01 

staircase for circle maps at the critical parameter 
value [21, 22]. In this case a resonance area is 
represented by the width of a mode locking inter- 
val of frequency m/n .  

Actually, Chen [30] has shown that the area 
under a partial barrier as a function of frequency 
1, is precisely Aubry's devil's staircase describing 
the lacking of epitaxial layers to a crystal [31], 
which is the derivative with respect to p of the 
average Lagrangian 

n - 1  

L =lim2- ~ Y' h ( x i , x i + l )  

for the corresponding orbits. 
Note, however, that our Farey tree and devil's 

staircase are not geometrically self-similar. In fact 
the decrease of area along any path accelerates 
with increasing generation. This is due to the fact 
that for k > kcr, no Farey paths approach frequen- 
cies which give invariant circles. Geometric scaling 
of areas should apply only for critical invariant 
circles. Indeed we have found previously that the 
scaling near a cantorus proceeds as the exponen- 
tial of an exponential [1], and not geometrically, 
and we suspect that a similar result holds in this 
case. 

4.5. Partial barriers have measure zero 

Outside the resonances, there are rotational in- 
variant circles and the partial barriers formed 
from cantori. The numerical results above indicate 

that the latter, as well as any other points that 
might exist outside the resonances have total mea- 
sure zero. Cantori always seem to be hyperbolic. 
Indeed this can be proved [23] quite easily for the 
standard map when k > 2x/~r2 + 1, and we need 

to assume hyperbolicity in order to define the 
partial barriers, at least with the techniques avail- 
able at present. We will show that the union of the 
partial barriers for hyperbolic cantori have zero 
measure using Poincar~'s recurrence theorem, as 
follows. 

Let the sets ~ and q / b e  the union of the pieces 
of stable/unstable manifold, respectively, used to 
close gaps in cantori with rotation numbers in 
some interval, excluding the endpoints. The for- 
ward orbit of every point in ~ converges to the 
orbit of some endpoint of some cantorus, so it is 
not forward recurrent. But 6 a is contained in a 
bounded set, and T ~ c  SP, so by Poincarr's recur- 
rence theorem 5" has measure zero. Similarly by 
considering T-1, q/ has measure zero. The union 
of the cantori themselves has measure zero too 
since hyperbolic sets have non-zero Lyapunov ex- 
ponents, and any invariant set with non-zero 
Lyapunov exponents has a decomposition into 
sets of positive measure which are ergodic [24] 
which would be impossible for a union of cantori 
[4]. Thus the union of the partial barriers formed 
from hyperbolic cantori has measure zero, as 
claimed. 

5. Conclusions 

Chaotic motion takes place within resonances, 
and a point remains within a given resonance until 
it reaches a turnstile, when it makes a transition to 
another resonance. Numerical results suggest that 
the resonances plus the rotational invariant circles 
form a partition of phase space, up to a set of 
measure zero. For k > k c there are no rotational 
invariant circles, and the total area is filled by 
resonances. For large enough k the area of all 
resonances, except the driven ( m / l )  resonances, 
decreases. Thus, asymptotically for large k, phase 
space is filled entirely by the driven resonances. 



18 R.S. MacKay et a l . /  Resonances in area-presert~ing maps 

The resonance picture of chaotic motion is com- 

plementary to the picture based on partial barriers 
formed from cantori. The motion is seen to take 

place from resonance to resonance: resonances 
could be the states in a coarse grained stochastic 
description. Resonances form a countable set, 
which the cantori do not. This could lead to an 
orbit  coding scheme, where the code is a sequence 
of rationals designating which resonance an orbit 

is t rapped in at which time. Our plan is to test 
numerically a Markov model based on resonances, 
and to look for universal features of the resonance 

parti t ion to enable one to extrapolate from calcu- 
lations of a small number of resonances. 

For  any two resonances m/n and m'/n', the 
flux from one to another is limited most strongly 
by the partial barrier with minimum flux [1]. The 
min imum flux barrier seems to be the cantorus 
with the most  noble frequency between the reso- 
nance frequencies, e.g. (m + ~m')/(n + yn'), when 
m/n and m'/n '  are neighbours, ordered with 
n '  > n, and ~, is the golden mean (1 + V~-)/2. The 
direct transition from m/n to m'/n'  is possible 
only if the turnstiles of the resonances overlap. 
This implies that there is a maximum jump in 

frequency upon an iteration. 
This provides a rigorous version of the reso- 

nance overlap criterion: if the upper turnstile for a 

resonance of rotation number m/n overlaps the 
lower turnstile for a resonance of rotation number 
m' /n '>  m/n, then there are no rotational in- 
variant  circles with rotation number in the interval 
( m/n, m' /n '  ). 

Below the value of k for the destruction of the 
last rotational invariant circle, one expects that 
the phase space of the divided system is filled by 

the two components,  invariant curves and reso- 
nances, with the area of invariant curves going 
smoothly to zero as k approaches kcr. We have 
not verified this in detail, since our technique for 
determining resonance areas by using periodic 
orbit  approximations to the homoclinic orbits be- 
comes more difficult as k decreases. 

The geometry of the resonances is not simple. 
There are resonances corresponding to every ra- 
tional, with the area monotonically decreasing as 

one moves down the Farey tree. For reversible 
maps,  where the largest gaps line up on a symme- 

try line, there is a chimney in which all transport 
occurs. The range of possible transitions and the 
size of the chimney depend on the details of the 
area-preserving map, but far from the chimney a 
universal structure for the resonances is possible. 
The details remain to be worked out. 

In order to use the theory directly for continu- 
ous time Hamiltonian systems of 1½ or 2 degrees 
of freedom, our formulae need converting. We did 
this already for the formulae for flux [25], but 
conversion of the formulae for areas of resonances 

remains to be done. 
For  larger numbers of degrees of freedom there 

are in general no complete barriers to the chaotic 
motion. However it may still be possible to define 
resonances, and transitions between resonances, 
so the present picture opens up the possibility of 
treating transport  in systems of arbitrary number 
of degrees of freedom on a common basis. 
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Appendix 1 

Partial separatrices and minimising semi-orbits 

Katok  [11] proved that given any point x 0 in a 
gap (l 0, ro) in the set of points with minimising 
m/n+ orbit or m/n orbit, there is a forward 
minimising orbit x +, t > 0 ,  with x g = x  0 and 
x + ~ (l,, rl), t > 0, and a backwards minimising 

orbit x[, t<O, with x o = x  0 and x 7 ~ ( l , , r , ) ,  
t < O. These orbits are thus forward (backwards) 
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asymptotic  to the orbits of the minimising m / n  
points containing (10, ro) in the gap between them. 

The only problem is that as x 0 moves from l 0 

to ro, the corresponding phase space point (x 0, Po) 
need not move continuously. In particular, if a 
stable manifold has a turn in it so that it has two 
points with the same x-coordinate then by Aubry's 
Fundamenta l  Lemma [2] they cannot both have 

minimising forward orbits. (A Maxwell rule de- 
termines which is minimising [26].) However, Stark 

[27] showed in the hyperbolic case that every point 

(x0, Yo) of a stable manifold has an eventually 
minimising forward orbit, i.e. 3T  such that the 
segments [x, . . . . .  xt, ] are minimising V T <  t < t ' .  
The points (x~ ,  y0 +) do form a graph over x near 
hyperbolic minimising periodic points, thus pro- 
viding an alternative construction of invariant 

manifolds. 
One might have hoped, even though the in- 

variant manifolds are usually not graphs over x, 
that one could choose a heteroclinic point at which 
to change over in order to make the partial bar- 
riers always be graphs. But this is not always 

possible. You can always modify a map by loca- 
lised non-uniform rotations, preserving the twist 
property,  to make the invariant manifolds turn 

over before they meet. As a corollary, one cannot 
always choose partial barriers so that every point 
has either minimising forward or minimising back- 
ward orbit. 

Appendix 2 

initial conditions P0 = 0, P1 = 1, and Q0 = - 1 ,  

Q1 = 0; A x - lim Q , / P ,  as n ~ oe, and A 2 ~ 

limQ,,/Pn as n ~ - ~ .  The b, are given by 
- 0 2 F / O x , O x , + l  evaluated on a cantorus orbit; 

b, = 1 for the standard map. 

Lemma. There do not exist C, 3, > 0 such that 

Vn > O, Q , -  PnA1 > Ce "Y. 

Proof. Suppose V n  > O, Q .  - P~A 1 > Ce "r. Now 
(Q,  - P~A1)/P . ---> 0 as n --, m. So 

P, > C / K  e "v, 

for some K > 0. Eq. (H.12) of [15] implies that 

o , / e ,  - A ,  = Y'. bo/(bmemem+x) 
m > ~ n  

<- ~ bo /bm(K/C)Ze -2m~<De-2"L  
m >  rl 

This implies 

P~ = ( Q , , -  P, ,A1)/(Q, , /P . - A 1 )  > C / D e  3"v. 

Repeating this, we get 

P, > C / D  m exp (stony), 

where s , ,+l  = 2s m + 1 ~ oe. But 3C ' ,  F such that 
Pn < C'  e "r, n > 0. This is a contradiction. Simi- 

larly, one can see that Q n -  P,A 2 does not grow 
exponentially as n --, - oe. 

Hyperbolic cantori have zero length 

Aubry et al. [15] in appendix H prove that if the 
" p h o n o n  gap" of a cantorus is non-zero, then the 
projection of the cantorus onto the angle coordi- 
nate has zero length. We show here how to extend 
their proof  under the more dynamically relevant 
hypothesis of uniform hyperbolicity or, slightly 
weaker, positive Lyapunov exponent. 

We use their notation. Here Qn and P, repre- 
sent the configurations of two independent tan- 
gent orbits to the cantorus obtained from the 

Remark. Actually we suspect that Q , - P n A 1  is 
always bounded as n ~ o¢. 

Proposition. Every uniformly hyperbolic cantorus, 
and cantorus with positive Lyapunov exponent, 
has zero projected length. 

Proof. Suppose not. Then Aubry et al. prove ex- 
istence of an orbit of the cantorus for which 

A 1 = A 2. This implies h, = Q, - P n A x  is a tangent 
orbit  which does not grow exponentially in either 
direction of time. This contradicts hyperbolicity of 
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the  c an to ru s ,  s ince every t a n g en t  o rb i t  mus t  grow 

e x p o n e n t i a l l y  in  at least o n e  d i rec t ion  of  t ime. 

I f  the hypo thes i s  is weakened  to pos i t ive  

L y a p u n o v  e x p o n e n t ,  then  we use  the fact tha t  the 

set of  p o i n t s  tha t  A u b r y  et al. f ind wi th  A 1 = A 2 

has  pos i t ive  measure ,  wi th  respect  to the pu l l back  

of  H a a r  m e a s u r e  u n d e r  the semi -con jugacy  to 

r o t a t i o n ,  if the  c a n t o r u s  has  non -ze ro  length.  Al-  

m o s t  every  p o i n t  of the can torus ,  wi th  respect  to 

this  measu re ,  has  a L y a p u n o v  e x p o n e n t  a n d  it  is 

the  s a m e  a l m o s t  everywhere.  The  L y a p u n o v  expo-  

n e n t  ?~ of  the  c a n t o r u s  is def ined to be this value.  

T h u s  there  exists  a po in t  x wi th  this va lue  of 

e x p o n e n t  a n d  A t = A  2. Since x has  a t a n g e n t  

o r b i t  wh ich  does  n o t  grow exponen t i a l l y  in  e i ther  

d i r e c t i o n  of  t ime,  we deduce  tha t  ~k = 0. 

R e m a r k .  Actua l ly ,  we suspect  that  s ince can to r i  

a re  u n i q u e l y  ergodic,  every orb i t  has  the same  

e x p o n e n t ,  i n  which  case the  above  a r g u m e n t  Could 

be  s impl i f ied .  

Note added in proof 

A c t u a l l y  there  is a m u c h  easier p roo f  tha t  c an -  

tori  wi th  n o n - z e r o  exponen t s  have zero length,  

b a s e d  o n  a genera l  resul t  of  Young .  In  fact it  

shows  the  s t ronge r  resul t  tha t  they have d i m e n s i o n  

zero  [32]. 
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